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Rotating charged dust in general relativity 
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Physics Department, Presidency College, Calcutta, 700073, India 

Received 25 August 1981 

Abstract. The paper considers a distribution of charged dust in rigid motion where the 
electromagnetic potential vector A” = ku”, U’ being the velocity vector of the dust. Such a 
relation makes the magnetic field vector everywhere coincident in direction with the 
vorticity vector. Without introducing any specific symmetry assumption, Maxwell’s equa- 
tions and some of the Einstein equations yield some constraints on the ratio of charge to 
mass density. The investigation further leads to some coordinate-independent formulae 
from which it seems possible to construbt hitherto unknown solutions of the Einstein- 
Maxwell equations for distributions of charged dust for both constant and non-constant k. 

1. Introduction 

In a paper with identical title, Bonnor (1980) has considered the relativistic and classical 
theories of axially symmetric distributions of rotating charged dust. Specialising further 
to the case of rigid rotation, Bonnor could obtain the general solution of the Einstein- 
Maxwell equations in the case of vanishing Lorentz force. However if the Lorentz force 
did not vanish, Bonnor could obtain only a very special class of solutions with a value 
two for the ratio betwee? the charge density U and the mass density p. Bonnor 
wondered about the possible significance of this particular value of the ratio, which 
nevertheless remained unclarified. 

A close examination of these solutions of Bonnor shows that he has effectively 
assumed in this case the relation A” = kv” between the electromagnetic potential 
vector A @  and the velocity vector U” of the charged dust with kZ = $. The present 
author felt curious about whether one could proceed by retaining the formal relation 
but allowing k to have general constant or even non-constant value. Then again we had 
a hunch that the result of Bonnor regarding the interesting role of the value two for the 
ratio of charge to mass density may be due essentially to the condition of rigid motion, 
irrespective of axial symmetry. A reason for such an idea is the theorem previously 
deduced by De and Raychaudhuri (1968) that for static equilibrium of charged dust, 
lu l /p  must be equal to unity irrespective of any symmetry consideration. Could not 
similar general results hold good for stationary equilibrium as well? 

In the present investigation, it is found that assuming rigid rotation, and constancy of 
k, the general relations given by Raychaudhuri and De (1970) in terms of the electric 
and magnetic vectors and the characteristics of the velocity field (i.e. the shear, 
acceleration, vorticity and expansion) yield very simple formulae and one could indeed 
recover the results obtained by Bonnor although axial symmetry is nowhere assumed. It 
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is also shown that one can have solutions even for k 2  # a, but in that case the Poynting 
vector in the rest frame of the dust has to vanish. Kinematically this means that the 
vorticity and acceleration vectors are in the same direction. The investigation has 
further brought out formulae from which it would perhaps be possible to obtain many 
hitherto unknown solutions of the Einstein-Maxwell equations with arbitrary values of 
a l p  associated with non-constant values of k. 

2. The case of constant k 

We introduce the electric and magnetic field vectors as seen by the dust by the defining 
relations 

E” = Fa”v,, (2.1) 

B’ = *Fa”va = fqa”YuF,,~a. ( 2 . 2 )  

Assuming the already stated relation between the electromagnetic potential and the 
velocity vector 

A’ = kv’” (2.3) 

where k in the present section will be assumed to be a constant, by straightforward 
calculation we now obtain 

B” = -2ko”’, (2.4) 

E” = -kc”, (2.5) 

where U” and i)” are the vorticity and acceleration vectors defined by 

In the above formulae qaPv6 represent the Levi-Civita antisymmetric tensor, the 
comma and the semicolon stand for ordinary and covariant derivatives respectively. 

As we are considering a dust cum electromagnetic field distribution, the Einstein 
equations are (Lichnerowicz 1967) 

= - ~ v [ ~ v ” v ,  - (47)-’(F””FU, -aS”,FaPF,,)] 

= -87[pv”u,  -(47) - 1  1 /A (58 , - v”u,)(E2+B2) 

- (47) - ’ (EPE,  + B’B,)- (47)-’(v’sU + v,S”)] 

where S” is the Poynting vector, defined by 

and 
S” = 77 ”ypuE$p~u 7 

E2 = -E,E”, B2= -B,B”. 
We also have Maxwell’s equations 

F””;, = 47J”, 

*F””;, = 0. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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We assume the current to be purely convectional, so that 

J” = ( + U &  (2.13) 

where U is the charge density. From the divergence of equation (2.8) we obtain 

z j ,  = (a/p)EC”. (2.14) 

The Maxwell equations may be reduced to the following set of equations by resolving 
along and orthogonal to the velocity vector U ,  (Raychaudhuri and De 1970): 

(2.15) 

2Eauap -$9E* -va (EPia  -E,~p)+~PaAu(ZjA~aBu+~~Bu;a)=O, (2.16) 

(2.17) 

2B“uaL” -$@B. - U ~ ( B ~ ; ~  -Ba~CL)+~Aa~u(zjA~uEa-~AEu;a) = O .  (2.18) 

In the above equations uap and 9 are the shear tensor and the expansion scalar 
respectively, defined as 

(2.19) 

4 1 ~ u  =E”;, - (u//p)E2 - 2B,w”, 

B’zj, +Ba;, +2Eawa = 0, 

1 1 1 
g a p  = ~ ( u a ; p  + v a ; a ) - ~ ( g a p - v a v p ) e - ~ ( i f a v g  +vacp)  

e = U’*;,. (2.20) 

The assumption of rigid motion means that there exists a Killing vector [” in the 
direction of the velocity vector v : 

v M  = A t @ .  (2.21) 

vFv ,  = 1, 

As U’ is a unit vector, 

A 2  = (&e”)-’. 
We now have 

A,&- = u a p  = e = 0. 

S ( r r ; v ,  = 0 

Using the Killing equation 

we obtain 

= (1% A),,, 

E, =(-k log A),,. 

The Lie derivative of E@ with respect to 5” vanishes, so that 

0 = e, ;aEa -E, ;,tu 
= -&;,Ea -E,;,ea 

= -(l/A),,v,E“ - ( l /A)va; ,Ea -E,;ava/A. 

= ( 1 / A  ) U  (Ea ;& - E, ;a 1 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26a) 

where we have used vaE,  = 0. In an exactly similar manner we may show that 

v“(B,;, -B,;,)=O. (2.266) 



834 A K Raychaudhuri 

Using equations (2.22), (2.24) and (2.26a), the first three terms in (2.16) vanish and 

(2.27) 
we obtain 

qPOthu(VA~,Bm + vAB,;,) = 0. 

Equation (2.27) may be written in the form 

U, ( V F B u  - d m B , )  + U, (VuBa - CUB,) + V u  ( 6 3 ,  - V,Ba 

+ V ,  (Bm;a  - Ba ;u) + vu@, ;@ - B, ;a> + up (Bw;u - Bm;, 1 = 0 

so that contracting with v u  and using (2.26b), we obtain 

(V,B, - VuB,) + 

(&/A ),, - @,/A ),U = 0 

= 0. 

Substituting from equation (2.24), the above equation gives 

so that we obtain finally 

B, = A$,&. 

Using (2.4), (2.5) and (2.28) in equation (2.17), we obtain 

= - ( 3 / A ) * , d +  

(2.28) 

or 

($;@A ’);, = 0. (2.29) 

In the case when the Poynting vector defined by (2.9) vanishes, the scalar $ will be a 
function of A and (2.28) will assume the form 

B, = F(A)A,,. (2.286) 

We shall return to equation (2.28b) later. 
In view of equations (2.22), (2.5) and (2.25) and taking account of the vanishing of 

the Lie derivative of B’ with respect to 6” (cf equation (2.26)), we find that equation 
(2.18) is trivially satisfied. From equations (2.5) and (2.14) we obtain 

u/p = - l / k .  (2.30) 

Using equations (2.4), (2.30) and (2.1% we have 

47ru = E“;, + (1/k)(E2 - B 2 ) .  (2.31) 

To proceed further we make use of the identity 

v ~ ; , ; , ,  - v @ ; ~ ; ,  = RmavQ. (2.32) 

The explicit form of the identity (2.32) using equation (2.8) has been worked out by 
Raychaudhuri and De (1970). We reproduce the results as simplified by taking into 
consideration equation (2.22): 

(4rp +E2)(1 -(r2/p2) + B 2  = 2(r/p)Bao, + 2w2+ (u/p),,E@, (2.33) 

2 s y  = q ~ ” * ~ ( o ~ ; ; B v y  -2o,v,V/3). (2.34) 

In equations (2.33) and (2.34) we have corrected some mistakes regarding signs in the 
paper of Raychaudhuri and De which we came across in the process of checking. 
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Substituting from equations (2.4) and (2.30), equation (2.33) becomes, if k 2  # 1, 

47rp + E 2  = -B2 (2k2 + 1)/2(k2 - 1). (2.35) 

In the case k 2  = 1, equation (2.33) along with (2.30) would give B’” = U’’ = 0. 6’’ would 
then be a hypersurface orthogonal vector and the equilibrium would be called static, 
and we then recover the result of De and Raychaudhuri (1968). Equation (2.35) shows 
that k2 < 1, or I u ( / p  > 1. 

In view of equations (2.27), (2.9) and (2.5) both terms on the right in equation (2.34) 
may be expressed in terms of the Poynting vector, and doing so we obtain 

2s’ = SY/2k2. 

so that either 

sy=o  (2.36) 

or 

k 2  = $, u / p  = *2* (2.37) 

Of course there is a third alternative that both (2.36) and (2.37) are valid. Using 
equation (2.37) in (2.31) and (2.35), we obtain 

47rp + E2 = E’, (2.38) 

Eaio! = 0. (2.39) 

Equation (2.38) shows that for p > 0, B2 > E’, i.e. the magnetic field dominates over the 
electric field. This result can be made significant if one keeps in mind that the vorticity 
in our case is proportional to the magnetic intensity, and while both electric and 
magnetic field energy densities as well as the mass energy density contribute to 
gravitational ‘attraction’, equilibrium is due to these being balanced by the ‘centrifugal 
repulsion’ and electromagnetic interaction. In view of equation (2.25), equation (2.39) 
may be written as 

(log A)+”” = 0. (2.40) 

It is interesting to compare these results with those of Bonnor (1980). While we 
have pursued the investigation without using any coordinate system or axial symmetry, 
Bonnor introduced axial symmetry and using a comoving coordinate system could write 
the line element in the form 

ds2=-e”(dr2+dz2)-I de2-2mde dt+f  dt2 (2.41) 

with 

fl+ m = r2 .  (2.42) 

He then obtained, with the condition (2.37) introduced in a rather ad hoc manner, the 
following equations: 

V2(ln 4) = o (2.43) 

where 
4 = fif”2, (2.44) 

V’ = a2/az2 + a2/ar2 + ( I / r ) a / a r ,  (2.45) 
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(2.46) 

(2.47) 

(2.48) 

where the subscripts 1 and 2 indicate the coordinates z and r respectively. Comparing 
the line element (2.41) with equation (2.21) we find, with 4 standing for the time 
coordinate, 

6" = SW4, (2.49) 

A 2 =  l / f ,  (2.50) 

(2.51) 

(2.52) 

Thus equations (2.43), (2.46), (2.47) and (2.48) are identical with our equations (2.40), 
(2.28) and (2.29) respectively if Bonnor's Y is identified with our $. Bonnor summed 
up his investigation with the words 'a solution is obtained by choosing a harmonic 
function for In C#I and then solving the equation for Y'. In our case where axial 
symmetry is not assumed, things may not be that simple; nevertheless it is fairly obvious 
that one can obtain solutions even in more general cases. However, to obtain a 
complete solution, one would have to introduce a coordinate system with some specific 
conditions-in the present investigation we propose to confine ourselves to coordinate- 
independent tensor relations. 

It is clear from the foregoing that the specific value two of lul/p need not hold good if 
S" vanishes. We shall now discuss this case. From equations (2.30), (2.31) and (2.35) 
we obtain, eliminating U and p, 

B2. 
4k2- 1 

2k(k2- 1) 
-k(log A),,'" = 

Using now (2.286) which holds because 
equation becomes 

the Poynting vector vanishes, the above 

where 

q=logA, 

B, =f(q)q , , .  

With equation (2.55), equation (2.17) yields in place of (2.29) 

(2.53) 

(2.54) 

(2.55) 

f(4)4.,L;w = -q , ,q*Wf(q)  +f'(4)19 (2.56) 

f ( q )  indicating the derivative of f ( q )  with respect to q. Comparing equations (2.53) and 
(2.56), we obtain (if k 2  # 1 or t) 

1 1 f '  4k2- 1 
?+? ? = - 4 k ~ ( k 2 -  1) 
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which may be readily integrated to give 

4k2(k2-  1) 
f ( 4 )  = ( Ae4q - (2.57) 

where A is an arbitrary constant of integration. Equations (2.53) and (2.57) together 
can be used to develop complete solutions of the Einstein-Maxwell equations and the 
situation is especially simple in the case of axial symmetry. However, in keeping with 
the spirit of the present paper, we desist from doing that and confine ourselves to 
tensorial relations. The particular case obtained by putting A = 0 is somewhat interes- 
ting. With f real this is possible only if i C  k 2 <  1,  i.e. if l a l / p  lies between 2 and 1. In 
this case equation (2.55) gives 

Thus A = 0 corresponds to a constant ratio between the magnetic and electric intensi- 
ties, although the ratio may range from zero to arbitrary large values. If kZ = 1, we have 
the simple electrostatic case, while for k2  = $, (2.53) passes over to (2.40), and using 
equations (2.56) and (2.53) one obtains 

B,A3 = CA,,, 

with C an arbitrary constant. An explicit solution for this case with axial symmetry is 
given by Bonnor (1980). 

In general for A = 0, we obtain on substituting from equation (2.57) in (2.53) 

q,";" = -2q,,,q"" 

or 

[A'],,;" = 0. (2.58) 

This may be compared with equation (2.40) obtained earlier for S y  f 0. 
With A # 0, a substitution of (2.57) into (2.53) gives after some simplification 

[sin-'(aA2)],,;" = 0 (2.59a) 

or 

[sinh-'(aA2)],,'" = 0 (2.596) 

according as 4k2(k2- 1)A/(4k2- 1 )  is positive or negative and 

a 2  = 14k2(k2- 1)A/(4k2- 1)l. 

Again the equations (2.59) may be reduced to Laplace's equation in two dimensions in 
the case of axial symmetry. 

3. Case of non-constant k 

We retain equation (2.3) but allow k to be a variable scalar subject to the vanishing of its 
Lie derivative with respect to the Killing vector t", i.e. 

(3.1) k,J' = 0 + k,,,v@ = 0. 
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Using the definitions (2.1) and (2.2), we find that 

B w  = -2kw*, (3.2) 

E,  = -kV,, + k,,. (3.3) 
Combining equation (3.3) with (2.141, which is still valid, we obtain 

(3.4) 

E,  = k,,/(1 + k d P ) .  (3.5) 

Equations (3.4) and (3.5) show that the three vectors E,, v, and k,, are in the same 
direction. 

Equation (2.27) on substitution of (3.2) now gives 

77 a p A ,  ( V ~ v p B , - 2 k ~ ~ w , : p - 2 v ~ w , k . p )  = 0. (3.6) 

Using equations (3.4), (3.5) and (3.6) in equation (2.34), we obtain 

2SY=(SY/k2)[t-(ku/p+ l)] 

so that if S y  # 0, 

u / p  -(4k2+ 1)/2k. (3.7) 
Note that if k2  = $, (3.7) gives I&p = 2 in agreement with (2.37). In general with k 
variable, u / p  would also be variable but according to (3.7), lul /p has the highest value 2 
corresponding to k2  = $. Eliminating zj, and a l p  from equations (2.24), (3.4) and (3.7). 
we obtain for k2 # f 

A =L1(4k2- l ) /kl  (3.8) 
where L is an arbitrary constant. The appearance of such an arbitrary constant need not 
cause any surprise; the Killing vector 6” is arbitrary up to a constant multiplier and 
hence the arbitrariness in A (see equation (2.21)). Thus if 6’ is suitably normalised, L 
can be taken to be unity. 

We now use (3.7) in ( 3 3 ,  (2.15) and (2.33) to obtain 

E,  = -2k,,/(4k2- l ) ,  (3.9) 
2k E + ; , - E ~ + -  2 

4k2 + 1 B2’ 
47rp =-- 

47rp = - 

4k2+  1 

16k4+4k2+ 1 
12” (E2-B2). 

(3.10) 

(3.11) 

Equation (3.11) shows that even in this case of variable k the magnetic field 
dominates over the electric field. Eliminating p from equations (3.10) and (3.11), we 
obtain 

2(16k4+4k2+l)kEe”;, +(4k2-1)2(4k2+1)E2-2(4k2-1)(2k2+1)B2=0.  (3.12) 

Equation (3.12) is in agreement with equation (2.39) in the case k2  = f .  Eliminating E’” 
from equations (3.12) and (3.9) and using the form (2.28) for B’, we obtain 
(64k6- 1)k3k”,, - k2(64k6+48k4+ 12k2- l)k,,k” 

-3(2k2+ 1)(4k2- l)3$,,&’ = 0. (3.13) 
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Again substituting (2.28) in (2.17) and keeping in mind that k is now not a constant, we 
obtain 

[$., k 4 / ( 4 k 2  - l)3];” = 0 ( k z  # a). (3.14) 

Equations (3 .13)  and (3.14) may form the basis for obtaining solutions in particular 
cases. In fact, if axial symmetry is assumed and a Weyl-type coordinate system 
introduced, the divergences in the above equations will be reduced to ordinary 
Laplacians in two dimensions and trial solutions (albeit somewhat complicated) may not 
be difficult to obtain. However in the present paper it is not our purpose to go into that 
exercise. 

The situation is different if S” vanishes. Equation (3.7) and all that follow do not 
apply. In view of equation (2.24) and (3 .4)  it follows that A, k and a l p  are functionally 
related. Writing 

4 , I A  = g ( k ) k , ,  (3.15) 

where g ( k )  is a function of k, one has 

PIU = ( 1  - kg) /g ,  (3.16) 

E, = k , , ( l -  kg) .  

Equations (2.15) and (2.33) now give 

(3.17) 

4 ~ ~ = ( 1 -  kg)k,@’& - k ( g 1 + g 2 - f z / k 2 ) k , , k w ,  (3.18) 

g 2  ) = [ ( 1  - kg)’- g 2  + 2fz  
( 1  - w2 47rp( 1 - 

(3.19) 

where 

B, = f ( k ) k , ,  
and because of equation (2.17) 

fk,,;” = -k+k’( f ’  + 2fg - f /  k ) .  (3.20) 

Obviously one can eliminate a and p from equations (3.16),  (3.18) and (3.19) to obtain 
an equation involving k,,”’, k,,k’ and the two scalars f and g and their first-order 
derivatives with respect to k. This equation along with (3.20) would give two equations 
for the three unknown functions f ,  g and k. One has thus the freedom to adjoin a 
suitable relation between the three functions to simplify the equations. Again it is not 
our puipose to enter into these details in this paper. 

4. Concluding remarks 

The main results of the paper may be summed up as follows. If one assumes for a 
distribution of charged dust in rigid rotation the relation (2 .3) ,  then for constant k, one 
has in general k 2  =a and l a l / p  = 2 except when the Poynting vector in the rest frame of 
the dust vanishes. Kinematically this vanishing corresponds to an alignment of the 
vorticity and acceleration vectors. In this latter case one can apparently obtain 
solutions with arbitrary (but constant) values of a l p .  When k is not a constant, Ia l lp  
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has, in general (i.e. if the Poynting vector does not vanish), a simple relation with k and 
has a maximum possible value of two. With the Poynting vector vanishing in the case of 
variable k, there is an additional degree of freedom. A notable feature of the present 
investigation is that no symmetry assumption has been introduced and the results have 
been obtained in a coordinate-independent manner. 

The alignment of the electromagnetic potential and the velocity vectors, which is the 
crucial assumption of the paper, has not been further investigated. It leads to an 
alignment of the vorticity vector with the magnetic field. While this may be a 
mathematically appealing situation, in nature this condition is perhaps rarely realised. 
In particular, in the case of neutron stars which may be supposed to be seats of intense 
magnetic fields, the magnetic dipole moment is perhaps inclined to the axis of rotation 
giving rise to radio emission. Such an energy emission, of course, would make even the 
stationary assumption invalid. 
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